Jeff Gokingco @ 2621

M68040 Docunentation Errata (new) MZ68000 Docunentation
Errata, Docurentation Support

040cqf p. eps (Faxabl e)

EE R I S I R I S I R I R I S R I I I O I R I R R I S R I S R

68040UM AD Rev. 1 Errata
khhkkkhhkkhhhkhkhhhkkhhhhhhhkhhhhhhhkhhhhdhhxkhhhhdhdxddhhdhdxddhdddhxddh*xddx*dkx*x%%
page 12-2, 12-3, 12-5: PGA drawi ng shows pin S6 correctly as M S*
but table at bottom of page incorrectly lists pin S6 as Interna
Logi ¢ G\D.

page 12-4: PGA drawi ng 12.2.3 shows pin S6 correctly as JS1, but
table at bottom of page incorrectly lists S6 as G\D.

page 12-10: There are drawing errors in Figure 12-2. Refer to
040cqf p. eps.

page A-5 First bullet: Delete the word "small". Sentence should read
"The MC68LC040 does not inplement the output buffer imedance
sel ection node.

page 7-52 to 7-58: Section 8.2 Bus Arbitration Exanples section
contains many errors in various figures. Please ignore this section
if it confuses the reader.

page 7-47 Figure 7-30: State machine should indicate that a
transistion fromthe Inplicit Owmership state to the O PARK state
be caused by the condition: BG (bus grant) asserted and |IBR (interna
bus request) asserted.

page 8-31 Table 8-6: In the colum "Hard O eanup Action", the coment
"Wite PD3-0 and skip" applies only to the the Wite Page Fault case
in which a MOVE16 (2ML6=1)in the WB2S

KRR S I S S I O O O kR S S S R I S

Al'l 68040/ LC040/ ECO40/ 040V devi ces, all masks: Attention on Usage

khkhkkhkhkhhkhkhhhhhhhhhhhdhhhdhhhdhhhdhhhhdhhhhhhdhhhdhhhdhhhdhhhddhdddhdddrrdrxdx*x*x

The following itens provide clarification to the operation of the
68040. The description of these itens takes precedence over any
previ ous description contained in the M68040 User's Manual

Item #1004: The TLN pins during instruction line fetches are not
val id. However, they are valid for data |ine fetches.

Item #1005: The RESET instruction causes the PSTx signals to indicate
exception stacking i nstead of START/ CONTI NUE encodi ng.

Item #1285: Under certain conditions, the processor asserts BR* and
negates it |later without executing a bus cycle. External arbiter
designs take into account this possible behavior.

Item #1327: |If in supervisor node, a stack frame is restored which
has an odd address PC and an SR which indi cates user trace node, then

an address error is taken, but the SR stacked for the address error
has the supervisor bit set in the SR For the 030, the supervisor bit
is clear.

I[tem #1426: In a two, '040-type master system when a master which
inmplicitly owned the bus has its BG negated it tristates the address
and attribute lines it was driving in the next clock period. However,
if another '040-type master is given the bus with its BG asserted at
the sane tine the previous naster has its BG negated, this master
can start driving its address and attribute Iines at the sane tine
the previous master is trying to tristate them

External arbiters nust be designed such that there is at |east one
ri sing BCLK edge in which all bus nasters have their respective BG
i nputs negated when transferring bus ownership to another master

Item #1479: A | ocked access can erroneously hit in the data cache,
even though the data cache is disabled. Wen the data cache is re-
enabled at a later time, the first non-locked access that nmisses in
the data cache will not be allocated in the data cache.

Al though it is unclear what inpact this has on typical systens, to
avoi d encountering this item it is best to invalidate the data cache
when it is disabled.

Item #1483 When a TLB or TTR write protect fault is taken on the
MOVEL16 wite, in which the MOVEL6 source is dirty in the cache, and
that the source and destination addresses for the MOVEL6 are the
sane, (specifically, a MOVEL6 (Ax)+, (Ay)+ instruction in which
Ax=Ay), the associated dirty cache line is invalidated and | ost.

Item #1509: If a LOCKED access (TAS/CAS instruction) hits a dirty
entry in the data cache, it invalidates the matching valid entry and
pushes it out. The 040 will begin asserting the external LOCK* pin on
this cache push. Strictly speaking, the proper behavior of the 040
shoul d be to performthe cache line push first before asserting the
LOCK* si gnal

A wor karound for systens that cannot tolerate |long periods of tine
in which the LOCK* is asserted, is to place semaphores in cache-
i nhi bited space to avoid this situation

Item #1556: Bus error (TEA* asserted) on cache line push within the
nei ghbor hood of an interrupt exception processing sequence may cause
a Spurious Interrupt Exception instead of an Access Error Exception
The foll owi ng sequence describes the problem

1) IPLx* lines are asserted to signal an interrupt request.

2) IPEND* is asserted to signal a pending interrupt processing.

3) A cache push of a data cache line occurs. This cache push to
menory results in a physical bus error (TEA* asserted). The
PSTx=8$F i ndi cat es exception stacking, although the 040 has not
yet begun exception processing or exception stacking for the
i nterrupt.

4) The 040 starts exception stacking for a Spurious |nterrupt
Excepti on.

In the strictest definition of a Spurious Interrupt, there is only
one case in which the Spurious Interrupt Exception is signaled:

physi cal bus error during an Interrupt Acknowl edge Cycle. In this
case, a bus error terminates a cache line push access instead of an
Interrupt Acknow edge cycle. However, a cache |ine push access should
be rare, if ever, in a typical systemenvironment. The fact that the

cache line resided in the cache prior to its push indicates that the
physi cal menory associated with that cache |ine had been coherent and
accessible at the time of its allocation into the cache.

The workaround is treat this case as a catastrophic, non-
recoverabl e case and to point the Spurious Interrupt Exception
handl er to the appropriate catastrophic systemerror entry point.

Item #VD14: A misaligned data cache | ookup with Snoop | nvalidate may
result in wong data. The foll owi ng sequence describes this problem
1) The 040 performs a misaligned read that spans two cache lines,
and the first part of a msaligned data read hits in the first

cache line, and the data is used.

2) A snoop occurs on the second cache |ine associated with the
second part of the m saligned read, hence invalidating the
second cache line and updating main nmenory with new dat a.

3) The second part of the misaligned read misses in the data
cache, goes out to main nmenory and picks up the new data.
Hence, the operand read by the 040 is half old, half new

In this case, the correct data is dependent on the timng of the read
relative to the snoop access. The correct answer needs to be the
"old" data in its entirety, or the "new' data in its entirety, not
the half-new, half-old as supplied by the processor in this case.
There are two possi bl e wor kar ounds:

1) Shared nenory space nust be accessed using aligned operand
accesses only

2) Shared nmenory pages nust be accessible to only one naster at
any one tine (inplenented via semaphores, and these senaphores
must not be m saligned).

Item #1527 If a wite in copyback space is nmisaligned so that the
operand request spans two cache lines, and a bus error (TEA*
asserted) is received on the fetch of the second, third or fourth
 ongword of the second cache line fill, then the Access Error
exception handling may not be recoverable w thout |oss of data.

Specifically, if subsequent instructions also wite to an address
that hits in the sane first cache line used by the origina
instruction, then the data witten by any nunber of these subsequent
instructions may be lost, until an instruction msses in the cache or
the fetch of the second line is term nated by a TEA*

To recover fromthe bus errors (TEA* asserted), 1) do not allow
m sal i gned operands to span across two cache |ines when using the
copyback node, or 2) place a NOP instruction after instructions which
have nisaligned wite operands that span two cache lines in copyback
space.

ltem #JGL00: If a line transfer is burst inhibited via the assertion
of TBlI*, three additional |ongword bus cycles are run by the 040 to

conplete the original line transfer. Wthin the tenure of these fake-
burst transfers, assertion of TA* during the BCLK edges in which TS
is asserted will result in inproper sequencing of the line transfer

Normal Iy, the 040 ignores TA* during these edges. The workaround is
to ensure that TA* is negated whenever TS* is asserted.

EE R S I R I I S I I I R R I R I R I I R I I R

The following itens are MMJ rel ated. Hence, they apply only to the
68040, 68040V, 68LC040

khkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhdhhhhhhhhhhhhkhhhkhhhhhhhhdhhhhhhkhhhkhdhkrrkhrkk*x*x

Item #1255: Under limited instruction alignment and tabl ewal k-rel ated
condi tions of a MOVES instruction execution resulting in an operand
bus error, and the MOVES is imedi ately foll owed by a MOVEM
instruction, the processor may inproperly set the CMbit in the
access error frame. When an RTE is eventually encountered to exit the
access error handler and to restore this erroneous frane, and that
the instruction to be restarted, as pointed to by the stacked program
counter is not a MOWEM instruction, pending interrupts will not be
reported until the next MOVEM instruction is encountered. The

wor karound is to place instructions between the MOVES- MOVEM
instruction pair.

Item #1324: Tabl e and page descriptors nust not be placed in
cacheabl e copyback pages. Al so, the operating system nust not |eave
page descriptors in pathol ogi cal conbinations such as W=0, M:=1. This
error condition may cause silent data corruption

Item #1409: The P bit of the TC is undefined out of reset. This bit
nmust be set properly to the desired page size before enabling the
MW

I[tem #1505 If the last 16 bits of a page is one of the special
exception-causi ng change of flow cases: Illegal, Chk, A-Line,

Uni npl enented fl oating-point (type $2 stack frane), and the next page
is non-existent (or non-resident, pdt=0), the exception is not
reported inmedi ately. Instead, the 040 attenpts to prefetch the next
instruction on the non-exi stent (or non-resident) page, resulting in
an access fault exception in which the stacked program counter points
to the special exception-causing change of flow instruction opcode,
and the fault address points to the begi nning of the non-existent (or
non-resi dent) page. The workaround is to either avoid the above
scenario, or to have the access error handler allocate the non-

resi dent page, execute an RTE to effectively re-start the special
exception-causi ng change of flow instruction.

Item #1119: Wien accessing |/ O peripherals that are sensitive to
double writes, the follow ng guidelines nmust be foll owed:
1) The peripheral nust reside in non-cacheable, serialized nenory.
2) If possible, use only instructions that can generate one data
page fault per instruction
3) Do not the use of the followi ng instructions: bfclr, bfset,
bfins, novem fnove, frnovem fsave, nobvep, nmovem

Item #1553: |If a table wal k occurs during exception stacking for a
write access which was bus errored, the access error stack frame wll
incorrectly indicate valid WB1 and WB2 with the same address and
dat a.
To avoid a duplicate wite, the access error handl er nust detect this
case and discard the WB1L write-back. The pseudo-code is as foll ows:

if (WBlv==1 && WB2V==1 && WB1S==V\B2S && WB1A==W\B2A) {

WB1V=0; /* clear WBLlV, i.e. do not wite-back WBLD*/.

Thi s workaround will not conpromise data integrity, nor will it
discard intentional nultiple wites to serialized space.

Item #1557: Under certain circunstances, a MOVE16 wite ATC fault
i mproperly invalidates a dirty cache line. The followi ng steps are

needed to encounter this item
1) Assune a physical cache line at address $xxxxxZZZ that is in
the data cache and is marked dirty.
2) Execute MOVEL16 src, $yyyyyZZZ, where the page descriptor for
| ogi cal page $yyyyy is marked invalid, but the physica
address field in this invalid descriptor (supposed to be
undefined) is $xxxxx.
3) The MOVE16 wite access results, as it should, in an access
error exception since the page descriptor for the MOVEL6 wite
...... destination is an invalid descriptor. However, the physica
address field in the invalid descriptor is incorrectly used as
a valid translation of |ogical page $yyyyy, and the "matching"
cache line $xxxxxZZZ is incorrectly invalidated, causing a |oss of

dat a.
A workaround is to set the physical address field in all invalid
descriptors to a physical page which is never mapped in the system A
MOVE16 wite fault will never find a matching line in the cache to

(incorrectly) invalidate.

EE R I S I R I S I R I R I S R I I I O I R I R R I S R I S R

The following itens are Floating-point related. Hence, they apply to
t he MC68040 only.

hkhkhkkhkhkhhhkhhhkhhhhhhhhdhhhdhhhdhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhdhdhdddhdddrrdrxdx*x

Item #1045: An floating point BSUN exception handl er nust use the PC
in the integer stack frame to point to the offending floating point
instruction. The value in the FPIAR is invalid.

Item #1139: Wien executing an FSAVE, a bus error after the first two
wite bus cycles will cause the processor to stack a null frane
instead of an idle frame. Furthernore, when the bus error exception
is taken, the FA field of the Access Error frame is incorrect.

Item #1215: After reset, if a floating-point conditional (FNOP, FBcc,
FDBcc, FTRAPcc, FScc) instruction is executed, followed by an FSAVE
the FSAVE franme indicates NULL instead of |IDLE

I[tem #1291: An FMOVE FPn, FPminstruction may execute in 3 cycles
i nstead of 2 cycl es.

Item #1424 When executing an FMOVE to nenory instruction, and the
next instruction prefetch results in a bus error, the destination
nmenory may be witten twice even if it is designated as non-cacheabl e
serialized. Hence, the FMOVE instruction must not be used for
accessing I/ O peripherals in which unintentional double wites cannot
be tol erat ed.

